Dynamic Programming and Column Generation Based Approaches for Two-Dimensional Guillotine Cutting Problems
نویسندگان
چکیده
We investigate two cutting problems and their variants in which orthogonal rotations are allowed. We present a dynamic programming based algorithm for the Two-dimensional Guillotine Cutting Problem with Value (GCV) that uses the recurrence formula proposed by Beasley and the discretization points defined by Herz. We show that if the items are not so small compared to the dimension of the bin, this algorithm requires polynomial time. Using this algorithm we solved all instances of GCV found at the OR–LIBRARY, including one for which no optimal solution was known. We also investigate the Two-dimensional Guillotine Cutting Problem with Demands (GCD). We present a column generation based algorithm for GCD that uses the algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances.
منابع مشابه
A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size
We consider a Two-Dimensional Cutting Stock Problem where stock of different sizes is available, and a set of rectangular items has to be obtained through two-staged guillotine cuts. We propose a heuristic algorithm, based on column generation, which requires as subproblem the solution of a Two-Dimensional Knapsack Problem with two-staged guillotines cuts. A further contribution of the paper co...
متن کاملAlgorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm —for staged pat...
متن کاملColumn Generation Technique for Solving Two-dimensional Cutting Stock Problems: Method of Stripe Approach
We consider two-dimensional cutting stock problems where single rectangular stocks have to be cut into some smaller rectangular so that the number of stocks needed to satisfy the demands is minimum. In this paper we focus our study to the problem where the stocks have to be cut with guillotine cutting type and fixed orientation of finals. We formulate the problem as an integer programming, wher...
متن کاملAlgorithms for 3D guillotine cutting problems: Unbounded knapsack, cutting stock and strip packing
We present algorithms for the following three-dimensional (3D) guillotine cutting problems: Unbounded Knapsack, Cutting Stock and Strip Packing. We consider the case where the items have fixed orientation and the case where orthogonal rotations around all axes are allowed. For the Unbounded 3D Knapsack problem, we extend the recurrence formula proposed by Beasley for the Rectangular Knapsack Pr...
متن کاملA simple approach to the two-dimensional guillotine cutting stock problem
Cutting stock problems are within knapsack optimization problems and are considered as a non-deterministic polynomial-time (NP)-hard problem. In this paper, two-dimensional cutting stock problems were presented in which items and stocks were rectangular and cuttings were guillotine. First, a new, practical, rapid, and heuristic method was proposed for such problems. Then, the ...
متن کامل